Evaluation of the kinetic properties of the sporulation protein SpoIIE of Bacillus subtilis by inclusion in a model membrane.
نویسندگان
چکیده
Starvation induces Bacillus subtilis to initiate a developmental process (sporulation) that includes asymmetric cell division to form the prespore and the mother cell. The integral membrane protein SpoIIE is essential for the prespore-specific activation of the transcription factor sigmaF, and it also has a morphogenic activity required for asymmetric division. An increase in the local concentration of SpoIIE at the polar septum of B. subtilis precedes dephosphorylation of the anti-anti-sigma factor SpoIIAA in the prespore. After closure and invagination of the asymmetric septum, phosphatase activity of SpoIIE increases severalfold, but the reason for this dramatic change in activity has not been determined. The central domain of SpoIIE has been seen to self-associate (I. Lucet et al., EMBO J. 19:1467-1475, 2000), suggesting that activation of the C-terminal PP2C-like phosphatase domain might be due to conformational changes brought about by the increased local concentration of SpoIIE in the sporulating septum. Here we report the inclusion of purified SpoIIE protein into a model membrane as a method for studying the effect of local concentration in a lipid bilayer on activity. In vitro assays indicate that the membrane-bound enzyme maintains dephosphorylation rates similar to the highly active micellar state at all molar ratios of protein to lipid. Atomic force microscopy images indicate that increased local concentration does not lead to self-association.
منابع مشابه
Purification, kinetic properties, and intracellular concentration of SpoIIE, an integral membrane protein that regulates sporulation in Bacillus subtilis.
SpoIIE is a bifunctional protein which controls sigmaF activation and formation of the asymmetric septum in sporulating Bacillus subtilis. The spoIIE gene of B. subtilis has now been overexpressed in Escherichia coli, and SpoIIE has been purified by anion-exchange chromatography and affinity chromatography. Kinetic studies showed that the rate of dephosphorylation of SpoIIAA-P by purified SpoII...
متن کاملMorphogenic Protein RodZ Interacts with Sporulation Specific SpoIIE in Bacillus subtilis
The first landmark in sporulation of Bacillus subtilis is the formation of an asymmetric septum followed by selective activation of the transcription factor σF in the resulting smaller cell. How the morphological transformations that occur during sporulation are coupled to cell-specific activation of transcription is largely unknown. The membrane protein SpoIIE is a constituent of the asymmetri...
متن کاملPrespore-specific gene expression in Bacillus subtilis is driven by sequestration of SpoIIE phosphatase to the prespore side of the asymmetric septum.
The spoIIE gene is essential for the compartment-specific activation of transcription factor sigmaF during sporulation in Bacillus subtilis. SpoIIE is a membrane protein that is targeted to the potential sites of asymmetric septation near each pole of the sporulating cell. The cytoplasmic carboxy-terminal domain of SpoIIE contains a serine phosphatase that triggers the release of sigmaF in the ...
متن کاملSeptation, dephosphorylation, and the activation of sigmaF during sporulation in Bacillus subtilis.
Cell-specific activation of transcription factor sigmaF during sporulation in Bacillus subtilis requires the formation of the polar septum and the activity of a serine phosphatase (SpoIIE) located in the septum. The SpoIIE phosphatase indirectly activates sigmaF by dephosphorylating a protein (SpoIIAA-P) in the pathway that controls the activity of the transcription factor. By use of a SpoIIE-G...
متن کاملExpression of soluble, active fragments of the morphogenetic protein SpoIIE from Bacillus subtilis using a library-based construct screen
SpoIIE is a dual function protein that plays important roles during sporulation in Bacillus subtilis. It binds to the tubulin-like protein FtsZ causing the cell division septum to relocate from mid-cell to the cell pole, and it dephosphorylates SpoIIAA phosphate leading to establishment of differential gene expression in the two compartments following the asymmetric septation. Its 872 residue p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 186 10 شماره
صفحات -
تاریخ انتشار 2004